Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 12.739
1.
Clin Interv Aging ; 19: 795-806, 2024.
Article En | MEDLINE | ID: mdl-38745745

The World Health Organization recommends that older adults undertake at least 150 minutes of moderate intensity physical activity over the course of each week in order to maintain physical, mental, and social health. This goal turns out to be very difficult for most community dwelling older adults to achieve, due to both actual and perceived barriers. These barriers include personal health limitations, confinement issues, and self-imposed restrictions such as fear of injury. Climate change exacerbates the confinement issues and injury fears among the elderly. To assist older adults in obtaining the benefits of increased physical activity under increasingly challenging climate conditions, we propose a targeted non-volitional intervention which could serve as a complement to volitional physical activity. Exogenous neuro-muscular stimulation of the soleus muscles is a non-invasive intervention capable of significantly increasing cardiac output in sedentary individuals. Long-term daily use has been shown to improve sleep, reduce bone loss, and reverse age-related cognitive decline, all of which are significant health concerns for older adults. These outcomes support the potential benefit of exogenous neuro-muscular stimulation as a complementary form of physical activity which older adults may find convenient to incorporate into their daily life when traditional forms of exercise are difficult to achieve due to barriers to completing traditional physical activities as a result of in-home or in-bed confinement, perceptual risks, or real environmental risks such as those arising from climate change.


Climate Change , Muscle, Skeletal , Muscular Atrophy , Humans , Aged , Muscular Atrophy/prevention & control , Muscular Atrophy/therapy , Exercise , Exercise Therapy/methods , Electric Stimulation Therapy/methods
2.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732203

Skeletal muscle unloading occurs during a wide range of conditions, from space flight to bed rest. The unloaded muscle undergoes negative functional changes, which include increased fatigue. The mechanisms of unloading-induced fatigue are far from complete understanding and cannot be explained by muscle atrophy only. In this review, we summarize the data concerning unloading-induced fatigue in different muscles and different unloading models and provide several potential mechanisms of unloading-induced fatigue based on recent experimental data. The unloading-induced changes leading to increased fatigue include both neurobiological and intramuscular processes. The development of intramuscular fatigue seems to be mainly contributed by the transformation of soleus muscle fibers from a fatigue-resistant, "oxidative" "slow" phenotype to a "fast" "glycolytic" one. This process includes slow-to-fast fiber-type shift and mitochondrial density decline, as well as the disruption of activating signaling interconnections between slow-type myosin expression and mitochondrial biogenesis. A vast pool of relevant literature suggests that these events are triggered by the inactivation of muscle fibers in the early stages of muscle unloading, leading to the accumulation of high-energy phosphates and calcium ions in the myoplasm, as well as NO decrease. Disturbance of these secondary messengers leads to structural changes in muscles that, in turn, cause increased fatigue.


Muscle Fatigue , Muscle, Skeletal , Humans , Muscle Fatigue/physiology , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Muscular Atrophy/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology
3.
Int J Mol Sci ; 25(9)2024 May 05.
Article En | MEDLINE | ID: mdl-38732255

This research aimed to explore the healing impacts of Melittin treatment on gastrocnemius muscle wasting caused by immobilization with a cast in rabbits. Twenty-four rabbits were randomly allocated to four groups. The procedures included different injections: 0.2 mL of normal saline to Group 1 (G1-NS); 4 µg/kg of Melittin to Group 2 (G2-4 µg/kg Melittin); 20 µg/kg of Melittin to Group 3 (G3-20 µg/kg Melittin); and 100 µg/kg of Melittin to Group 4 (G4-100 µg/kg Melittin). Ultrasound was used to guide the injections into the rabbits' atrophied calf muscles following two weeks of immobilization via casting. Clinical measurements, including the length of the calf, the compound muscle action potential (CMAP) of the tibial nerve, and the gastrocnemius muscle thickness, were assessed. Additionally, cross-sectional slices of gastrocnemius muscle fibers were examined, and immunohistochemistry and Western blot analyses were performed following two weeks of therapy. The mean regenerative changes, as indicated by clinical parameters, in Group 4 were significantly more pronounced than in the other groups (p < 0.05). Furthermore, the cross-sectional area of the gastrocnemius muscle fibers and immunohistochemical indicators in Group 4 exceeded those in the remaining groups (p < 0.05). Western blot analysis also showed a more significant presence of anti-inflammatory and angiogenic cytokines in Group 4 compared to the others (p < 0.05). Melittin therapy at a higher dosage can more efficiently activate regeneration in atrophied gastrocnemius muscle compared to lower doses of Melittin or normal saline.


Melitten , Muscle, Skeletal , Muscular Atrophy , Regeneration , Animals , Rabbits , Melitten/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Regeneration/drug effects , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Male
4.
Nutrients ; 16(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38732549

Oleocanthal (OC) is a monophenol of extra-virgin olive oil (EVOO) endowed with antibiotic, cardioprotective and anticancer effects, among others, mainly in view of its antioxidant and anti-inflammatory properties. OC has been largely investigated in terms of its anticancer activity, in Alzheimer disease and in collagen-induced arthritis; however, the possibility that it can also affect muscle biology has been totally overlooked so far. This study is the first to describe that OC modulates alterations induced in C2C12 myotubes by stimuli known to induce muscle wasting in vivo, namely TNF-α, or in the medium conditioned by the C26 cachexia-inducing tumor (CM-C26). C2C12 myotubes were exposed to CM-C26 or TNF-α in the presence or absence of OC for 24 and 48 h and analyzed by immunofluorescence and Western blotting. In combination with TNF-α or CM-C26, OC was revealed to be able to restore both the myotube's original size and morphology and normal levels of both atrogin-1 and MuRF1. OC seems unable to impinge on the autophagic-lysosomal proteolytic system or protein synthesis. Modulations towards normal levels of the expression of molecules involved in myogenesis, such as Pax7, myogenin and MyHC, were also observed in the myotube cultures exposed to OC and TNF-α or CM-C26. In conclusion, the data presented here show that OC exerts a protective action in C2C12 myotubes exposed to TNF-α or CM-C26, with mechanisms likely involving the downregulation of ubiquitin-proteasome-dependent proteolysis and the partial relief of myogenic differentiation impairment.


Catechols , Cyclopentane Monoterpenes , Muscle Fibers, Skeletal , Muscle Proteins , Muscular Atrophy , Tumor Necrosis Factor-alpha , Animals , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Mice , Tumor Necrosis Factor-alpha/metabolism , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Muscle Proteins/metabolism , Cyclopentane Monoterpenes/pharmacology , Catechols/pharmacology , Cell Line , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Muscle Development/drug effects , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Autophagy/drug effects , Phenols/pharmacology , Cachexia/prevention & control , Culture Media, Conditioned/pharmacology , Aldehydes
5.
Nutrients ; 16(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38674820

Sarcopenia, a decline in muscle mass and strength, can be triggered by aging or medications like glucocorticoids. This study investigated cornflower (Centaurea cyanus) water extract (CC) as a potential protective agent against DEX-induced muscle wasting in vitro and in vivo. CC and its isolated compounds mitigated oxidative stress, promoted myofiber growth, and boosted ATP production in C2C12 myotubes. Mechanistically, CC reduced protein degradation markers, increased mitochondrial content, and activated protein synthesis signaling. Docking analysis suggested cannabinoid receptors (CB) 1 and 2 as potential targets of CC compounds. Specifically, graveobioside A from CC inhibited CB1 and upregulated CB2, subsequently stimulating protein synthesis and suppressing degradation. In vivo, CC treatment attenuated DEX-induced muscle wasting, as evidenced by enhanced grip strength, exercise performance, and modulation of muscle gene expression related to differentiation, protein turnover, and exercise performance. Moreover, CC enriched gut microbial diversity, and the abundance of Clostridium sensu stricto 1 positively correlated with muscle mass. These findings suggest a multifaceted mode of action for CC: (1) direct modulation of the muscle cannabinoid receptor system favoring anabolic processes and (2) indirect modulation of muscle health through the gut microbiome. Overall, CC presents a promising therapeutic strategy for preventing and treating muscle atrophy.


Dexamethasone , Gastrointestinal Microbiome , Muscular Atrophy , Plant Extracts , Gastrointestinal Microbiome/drug effects , Animals , Plant Extracts/pharmacology , Mice , Dexamethasone/pharmacology , Dexamethasone/adverse effects , Muscular Atrophy/drug therapy , Muscular Atrophy/chemically induced , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Receptors, Cannabinoid/metabolism , Receptor, Cannabinoid, CB1/metabolism , Cell Line , Mice, Inbred C57BL , Oxidative Stress/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Sarcopenia/drug therapy
6.
Int Immunopharmacol ; 133: 112133, 2024 May 30.
Article En | MEDLINE | ID: mdl-38652962

There is an increasing tendency for sepsis patients to suffer from diaphragm atrophy as well as mortality. Therefore, reducing diaphragm atrophy could benefit sepsis patients' prognoses. Studies have shown that Anisodamine (Anis) can exert antioxidant effects when blows occur. However, the role of Anisodamine in diaphragm atrophy in sepsis patients has not been reported. Therefore, this study investigated the antioxidant effect of Anisodamine in sepsis-induced diaphragm atrophy and its mechanism. We used cecal ligation aspiration (CLP) to establish a mouse septic mode and stimulated the C2C12 myotube model with lipopolysaccharide (LPS). After treatment with Anisodamine, we measured the mice's bodyweight, diaphragm weight, fiber cross-sectional area and the diameter of C2C12 myotubes. The malondialdehyde (MDA) levels in the diaphragm were detected using the oxidative stress kit. The expression of MuRF1, Atrogin1 and JAK2/STAT3 signaling pathway components in the diaphragm and C2C12 myotubes was measured by RT-qPCR and Western blot. The mean fluorescence intensity of ROS in C2C12 myotubes was measured by flow cytometry. Meanwhile, we also measured the levels of Drp1 and Cytochrome C (Cyt-C) in vivo and in vitro by Western blot. Our study revealed that Anisodamine alleviated the reduction in diaphragmatic mass and the loss of diaphragmatic fiber cross-sectional area and attenuated the atrophy of the C2C12 myotubes by inhibiting the expression of E3 ubiquitin ligases. In addition, we observed that Anisodamine inhibited the JAK2/STAT3 signaling pathway and protects mitochondrial function. In conclusion, Anisodamine alleviates sepsis-induced diaphragm atrophy, and the mechanism may be related to inhibiting the JAK2/STAT3 signaling pathway.


Diaphragm , Janus Kinase 2 , Muscular Atrophy , STAT3 Transcription Factor , Sepsis , Signal Transduction , Solanaceous Alkaloids , Animals , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Sepsis/drug therapy , Sepsis/complications , Solanaceous Alkaloids/therapeutic use , Solanaceous Alkaloids/pharmacology , Mice , Signal Transduction/drug effects , Diaphragm/drug effects , Diaphragm/pathology , Diaphragm/metabolism , Male , Cell Line , Muscular Atrophy/drug therapy , Muscular Atrophy/etiology , Disease Models, Animal , Lipopolysaccharides , Mice, Inbred C57BL , Oxidative Stress/drug effects , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Antioxidants/pharmacology , Antioxidants/therapeutic use , Muscle Proteins/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/metabolism , Atrophy
7.
Food Funct ; 15(9): 4936-4953, 2024 May 07.
Article En | MEDLINE | ID: mdl-38602003

Probiotics can exert direct or indirect influences on various aspects of health claims by altering the composition of the gut microbiome and producing bioactive metabolites. The aim of this study was to examine the effect of Lacticaseibacillus rhamnosus IDCC3201 on skeletal muscle atrophy in dexamethasone-induced C2C12 cells and a mouse animal model. Dexamethasone treatment significantly reduced C2C12 muscle cell viability, myotube diameter, and levels of muscle atrophic markers (Atrogin-1 and MuRF-1). These effects were alleviated by conditioned media (CM) and cell extract (EX) derived from L. rhamnosus IDCC3201. In addition, we assessed the in vivo therapeutic effect of L. rhamnosus IDCC3201 in a mouse model of dexamethasone (DEX)-induced muscle atrophy. Supplementation with IDCC3201 resulted in significant enhancements in body composition, particularly in lean mass, muscle strength, and myofibril size, in DEX-induced muscle atrophy mice. In comparison to the DEX-treatment group, the normal and DEX + L. rhamnosus IDCC3201 groups showed a higher transcriptional level of myosin heavy chain family genes (MHC1, MHC1b, MHC2A, 2bB, and 2X) and a reduction in atrophic muscle makers. These analyses revealed that L. rhamnosus IDCC3201 supplementation led to increased production of branched-chain amino acids (BCAAs) and improved the Allobaculum genus within the gut microbiota of muscle atrophy-induced groups. Taken together, our findings suggest that L. rhamnosus IDCC3201 represents a promising dietary supplement with the potential to alleviate sarcopenia by modulating the gut microbiome and metabolites.


Dexamethasone , Dietary Supplements , Gastrointestinal Microbiome , Lacticaseibacillus rhamnosus , Probiotics , Sarcopenia , Animals , Gastrointestinal Microbiome/drug effects , Mice , Sarcopenia/metabolism , Probiotics/pharmacology , Probiotics/administration & dosage , Male , Muscular Atrophy/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/chemically induced , Disease Models, Animal , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Mice, Inbred C57BL , Muscle Proteins/metabolism
8.
Gen Comp Endocrinol ; 353: 114513, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38604437

Skeletal muscle, comprising a significant proportion (40 to 50 percent) of total body weight in humans, plays a critical role in maintaining normal physiological conditions. Muscle atrophy occurs when the rate of protein degradation exceeds protein synthesis. Sarcopenia refers to age-related muscle atrophy, while cachexia represents a more complex form of muscle wasting associated with various diseases such as cancer, heart failure, and AIDS. Recent research has highlighted the involvement of signaling pathways, including IGF1-Akt-mTOR, MuRF1-MAFbx, and FOXO, in regulating the delicate balance between muscle protein synthesis and breakdown. Myostatin, a member of the TGF-ß superfamily, negatively regulates muscle growth and promotes muscle atrophy by activating Smad2 and Smad3. It also interacts with other signaling pathways in cachexia and sarcopenia. Inhibition of myostatin has emerged as a promising therapeutic approach for sarcopenia and cachexia. Additionally, other TGF-ß family members, such as TGF-ß1, activin A, and GDF11, have been implicated in the regulation of skeletal muscle mass. Furthermore, myostatin cooperates with these family members to impair muscle differentiation and contribute to muscle loss. This review provides an overview of the significance of myostatin and other TGF-ß signaling pathway members in muscular dystrophy, sarcopenia, and cachexia. It also discusses potential novel therapeutic strategies targeting myostatin and TGF-ß signaling for the treatment of muscle atrophy.


Cachexia , Muscular Atrophy , Myostatin , Neoplasms , Sarcopenia , Signal Transduction , Transforming Growth Factor beta , Humans , Cachexia/metabolism , Cachexia/pathology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Sarcopenia/metabolism , Sarcopenia/pathology , Signal Transduction/physiology , Neoplasms/metabolism , Neoplasms/complications , Neoplasms/pathology , Transforming Growth Factor beta/metabolism , Myostatin/metabolism , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology
9.
Biomed Pharmacother ; 174: 116556, 2024 May.
Article En | MEDLINE | ID: mdl-38636398

Skeletal muscle atrophy is a common complication of chronic kidney disease (CKD) that affects the quality of life and prognosis of patients. We aimed to investigate the effects and mechanisms of caffeic acid (CA), a natural phenolic compound, on skeletal muscle atrophy in CKD rats. Male Sprague-Dawley rats underwent 5/6 nephrectomy (NPM) and were treated with CA (20, 40, or 80 mg/kg/day) for 10 weeks. The body and muscle weights, renal function, hemoglobin, and albumin were measured. The histological, molecular, and biochemical changes in skeletal muscles were evaluated using hematoxylin-eosin staining, quantitative real-time PCR, malondialdehyde/catalase/superoxide dismutase/glutathione level detection, and enzyme-linked immunosorbent assay. Western blotting and network pharmacology were applied to identify the potential targets and pathways of CA, CKD, and muscle atrophy. The results showed that CA significantly improved NPM-induced muscle-catabolic effects, reduced the expression of muscle atrophy-related proteins (muscle atrophy F-box and muscle RING finger 1) and proinflammatory cytokines (interleukin [IL]-6, tumor necrosis factor-alpha, and IL-1ß), and attenuated muscle oxidative stress. Network pharmacology revealed that CA modulated the response to oxidative stress and nuclear factor kappa B (NF-κB) signaling pathway and that Toll-like receptor 4 (TLR4) was a key target. In vivo experiment confirmed that CA inhibited the TLR4/myeloid differentiation primary response 88 (MYD88)/NF-kB signaling pathway, reduced muscle iron levels, and restored glutathione peroxidase 4 activity, thereby alleviating ferroptosis and inflammation in skeletal muscles. Thus, CA might be a promising therapeutic agent for preventing and treating skeletal muscle atrophy in CKD by modulating the TLR4/MYD88/NF-κB pathway and ferroptosis.


Caffeic Acids , Muscular Atrophy , Myeloid Differentiation Factor 88 , Renal Insufficiency, Chronic , Signal Transduction , Animals , Male , Rats , Caffeic Acids/pharmacology , Cytokines/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/pathology , Muscular Atrophy/etiology , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Myeloid Differentiation Factor 88/metabolism , Nephrectomy/adverse effects , NF-kappa B/metabolism , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
10.
Cancer Cell ; 42(5): 885-903.e4, 2024 May 13.
Article En | MEDLINE | ID: mdl-38608702

With limited treatment options, cachexia remains a major challenge for patients with cancer. Characterizing the interplay between tumor cells and the immune microenvironment may help identify potential therapeutic targets for cancer cachexia. Herein, we investigate the critical role of macrophages in potentiating pancreatic cancer induced muscle wasting via promoting TWEAK (TNF-like weak inducer of apoptosis) secretion from the tumor. Specifically, depletion of macrophages reverses muscle degradation induced by tumor cells. Macrophages induce non-autonomous secretion of TWEAK through CCL5/TRAF6/NF-κB pathway. TWEAK promotes muscle atrophy by activating MuRF1 initiated muscle remodeling. Notably, tumor cells recruit and reprogram macrophages via the CCL2/CCR2 axis and disrupting the interplay between macrophages and tumor cells attenuates muscle wasting. Collectively, this study identifies a feedforward loop between pancreatic cancer cells and macrophages, underlying the non-autonomous activation of TWEAK secretion from tumor cells thereby providing promising therapeutic targets for pancreatic cancer cachexia.


Cachexia , Cytokine TWEAK , Macrophages , Pancreatic Neoplasms , Cachexia/metabolism , Cachexia/etiology , Cachexia/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/complications , Cytokine TWEAK/metabolism , Animals , Humans , Macrophages/metabolism , Mice , NF-kappa B/metabolism , Cell Line, Tumor , Tumor Microenvironment , Muscular Atrophy/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Chemokine CCL5/metabolism , Signal Transduction , TNF Receptor-Associated Factor 6/metabolism , Tumor Necrosis Factors/metabolism , Receptors, CCR2/metabolism , Chemokine CCL2/metabolism , Mice, Inbred C57BL
11.
Skelet Muscle ; 14(1): 7, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643162

BACKGROUND: Muscle atrophy is a common consequence of the loss of innervation and is accompanied by mitochondrial dysfunction. Mitophagy is the adaptive process through which damaged mitochondria are removed via the lysosomes, which are regulated in part by the transcription factor TFE3. The role of lysosomes and TFE3 are poorly understood in muscle atrophy, and the effect of biological sex is widely underreported. METHODS: Wild-type (WT) mice, along with mice lacking TFE3 (KO), a transcriptional regulator of lysosomal and autophagy-related genes, were subjected to unilateral sciatic nerve denervation for up to 7 days, while the contralateral limb was sham-operated and served as an internal control. A subset of animals was treated with colchicine to capture mitophagy flux. RESULTS: WT females exhibited elevated oxygen consumption rates during active respiratory states compared to males, however this was blunted in the absence of TFE3. Females exhibited higher mitophagy flux rates and greater lysosomal content basally compared to males that was independent of TFE3 expression. Following denervation, female mice exhibited less muscle atrophy compared to male counterparts. Intriguingly, this sex-dependent muscle sparing was lost in the absence of TFE3. Denervation resulted in 45% and 27% losses of mitochondrial content in WT and KO males respectively, however females were completely protected against this decline. Decreases in mitochondrial function were more severe in WT females compared to males following denervation, as ROS emission was 2.4-fold higher. In response to denervation, LC3-II mitophagy flux was reduced by 44% in females, likely contributing to the maintenance of mitochondrial content and elevated ROS emission, however this response was dysregulated in the absence of TFE3. While both males and females exhibited increased lysosomal content following denervation, this response was augmented in females in a TFE3-dependent manner. CONCLUSIONS: Females have higher lysosomal content and mitophagy flux basally compared to males, likely contributing to the improved mitochondrial phenotype. Denervation-induced mitochondrial adaptations were sexually dimorphic, as females preferentially preserve content at the expense of function, while males display a tendency to maintain mitochondrial function. Our data illustrate that TFE3 is vital for the sex-dependent differences in mitochondrial function, and in determining the denervation-induced atrophy phenotype.


Mitochondria, Muscle , Muscle, Skeletal , Male , Female , Mice , Animals , Muscle, Skeletal/metabolism , Mitochondria, Muscle/metabolism , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Autophagy/physiology , Muscular Atrophy/metabolism , Lysosomes/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Denervation
12.
Cell Rep Med ; 5(4): 101498, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38569555

Progressive weakness and muscle loss are associated with multiple chronic conditions, including muscular dystrophy and cancer. Cancer-associated cachexia, characterized by dramatic weight loss and fatigue, leads to reduced quality of life and poor survival. Inflammatory cytokines have been implicated in muscle atrophy; however, available anticytokine therapies failed to prevent muscle wasting in cancer patients. Here, we show that oncostatin M (OSM) is a potent inducer of muscle atrophy. OSM triggers cellular atrophy in primary myotubes using the JAK/STAT3 pathway. Identification of OSM targets by RNA sequencing reveals the induction of various muscle atrophy-related genes, including Atrogin1. OSM overexpression in mice causes muscle wasting, whereas muscle-specific deletion of the OSM receptor (OSMR) and the neutralization of circulating OSM preserves muscle mass and function in tumor-bearing mice. Our results indicate that activated OSM/OSMR signaling drives muscle atrophy, and the therapeutic targeting of this pathway may be useful in preventing muscle wasting.


Neoplasms , Quality of Life , Humans , Mice , Animals , Oncostatin M/genetics , Oncostatin M/metabolism , Oncostatin M/pharmacology , Neoplasms/pathology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscle Fibers, Skeletal/metabolism
13.
Anticancer Res ; 44(5): 1963-1971, 2024 May.
Article En | MEDLINE | ID: mdl-38677769

BACKGROUND/AIM: Cancer cachexia is a wasting syndrome that has a devastating impact on the prognosis of patients with cancer. It is well-documented that pro-inflammatory cytokines are involved in the progression of this disorder. Therefore, this study was conducted to investigate the protective effect of taurine, an essential nonprotein amino acid with great anti-inflammatory properties, in attenuating muscle atrophy induced by cancer. MATERIALS AND METHODS: Conditioned media (CM) derived from T24 human bladder carcinoma cells with or without 5 mM taurine were incubated with human skeletal muscle cells (HSkMCs) and their differentiation was examined. The intracellular reactive oxygen species (ROS), morphology, and the catabolic pathway were monitored. RESULTS: T24-derived CM with high levels of TNF-α and IL-6 caused aberrant ROS accumulation and formation of atrophic myotubes by HSkMCs. In T24 cancer cells, taurine significantly inhibited the production of TNF-α and IL-6. In HSkMCs, taurine increased ROS clearance during differentiation and preserved the myotube differentiation ability impaired by the inflammatory tumor microenvironment. In addition, taurine ameliorated myotube atrophy by regulating the Akt/FoxO1/MuRF1 and MAFbx signaling pathways. CONCLUSION: Taurine rescues cancer-induced atrophy in human skeletal muscle cells by ameliorating the inflammatory tumor microenvironment. Taurine supplementation may be a promising approach for intervening with the progression of cancer cachexia.


Muscular Atrophy , Reactive Oxygen Species , Taurine , Tumor Microenvironment , Humans , Taurine/pharmacology , Tumor Microenvironment/drug effects , Muscular Atrophy/pathology , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Muscular Atrophy/etiology , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Cell Differentiation/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , Signal Transduction/drug effects , Cachexia/drug therapy , Cachexia/pathology , Cachexia/metabolism , Cachexia/etiology , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism , Culture Media, Conditioned/pharmacology , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism
14.
Apoptosis ; 29(5-6): 663-680, 2024 Jun.
Article En | MEDLINE | ID: mdl-38598070

Cancer cachexia-associated muscle wasting as a multifactorial wasting syndrome, is an important factor affecting the long-term survival rate of tumor patients. Photobiomodulation therapy (PBMT) has emerged as a promising tool to cure and prevent many diseases. However, the effect of PBMT on skeletal muscle atrophy during cancer progression has not been fully demonstrated yet. Here, we found PBMT alleviated the atrophy of myotube diameter induced by cancer cells in vitro, and prevented cancer-associated muscle atrophy in mice bearing tumor. Mechanistically, the alleviation of muscle wasting by PBMT was found to be involved in inhibiting E3 ubiquitin ligases MAFbx and MuRF-1. In addition, transcriptomic analysis using RNA-seq and GSEA revealed that PI3K/AKT pathway might be involved in PBMT-prevented muscle cachexia. Next, we showed the protective effect of PBMT against muscle cachexia was totally blocked by AKT inhibitor in vitro and in vivo. Moreover, PBMT-activated AKT promoted FoxO3a phosphorylation and thus inhibiting the nucleus entry of FoxO3a. Lastly, in cisplatin-treated muscle cachexia model, PBMT had also been shown to ameliorate muscle atrophy through enhancing PI3K/AKT pathway to suppress MAFbx and MuRF-1 expression. These novel findings revealed that PBMT could be a promising therapeutic approach in treating muscle cachexia induced by cancer.


Cachexia , Forkhead Box Protein O3 , Low-Level Light Therapy , Muscular Atrophy , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Cachexia/etiology , Cachexia/metabolism , Cachexia/genetics , Cachexia/pathology , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Mice , Muscular Atrophy/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Humans , Neoplasms/radiotherapy , Neoplasms/complications , Neoplasms/metabolism , Male , Cell Line, Tumor , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/radiation effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
15.
Physiol Rep ; 12(8): e16019, 2024 Apr.
Article En | MEDLINE | ID: mdl-38627220

Inactivity can lead to muscle atrophy and capillary regression in skeletal muscle. Niacin (NA), known for inducing hypermetabolism, may help prevent this capillary regression. In this study involving adult female Sprague-Dawley rats, the animals were randomly assigned to one of four groups: control (CON), hindlimb unloading (HU), NA, and HU with NA supplementation (HU + NA). For a period of 2 weeks, the rats in the HU and HU + NA groups underwent HU, while those in the NA and HU + NA groups received NA (750 mg/kg) twice daily through oral administration. The results demonstrated that HU lowered capillary number, luminal diameter, and capillary volume, as well as decreased succinate dehydrogenase activity, slow fiber composition, and PGC-1α expression within the soleus muscle. However, NA supplementation prevented these alterations in capillary structure due to unloading by stimulating PGC-1α factors and inhibiting mitochondrial dysfunction. Therefore, NA supplementation could serve as a potential therapeutic approach for preserving the capillary network and mitochondrial metabolism of muscle fibers during periods of inactivity.


Niacin , Rats , Female , Animals , Rats, Sprague-Dawley , Niacin/pharmacology , Niacin/metabolism , Niacin/therapeutic use , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Dietary Supplements , Hindlimb Suspension/methods
16.
Physiol Rep ; 12(8): e16011, 2024 Apr.
Article En | MEDLINE | ID: mdl-38627219

Renin-angiotensin system activation contributes to skeletal muscle atrophy in aging individuals with chronic diseases. We aimed to explore the effects of cholecalciferol (VD3) and calcitriol (1,25VD3) on signaling of muscle proteolysis and oxidative stress in myotubes challenged with angiotensin II (AII). The mouse C2C12 myotubes were assigned to vehicle, AII, AII + VD3, AII + 1,25VD3, and AII + losartan groups. The expression levels of muscle-specific E3 ubiquitin ligase proteins, autophagy-related proteins, and oxidative stress markers were investigated. We demonstrated the diverse effects of VD3 and 1,25VD3 on AII-induced myotube atrophy. The myotube diameter was preserved by treatment with 100 nM VD3 and losartan, while 1 and 10 nM 1,25VD3 increased levels of FoxO3a, MuRF1, and atrogin-1 protein expression in myotubes exposed to AII. Treatment with AII + 10 nM 1,25VD3 resulted in the upregulation of LC3B-II, LC3B-II/LC3B-I, and mature cathepsin L, which are autophagic marker proteins. The p62/SQSTM1 protein was downregulated and vitamin D receptor was upregulated after treatment with AII + 10 nM 1,25VD3. A cellular redox imbalance was observed as AII + 10 nM 1,25VD3-induced reactive oxygen species and NADPH oxidase-2 overproduction, and these changes were associated with an inadequate response of antioxidant superoxide dismutase-1 and catalase proteins. Collectively, these findings provide a translational perspective on the role of vitamin D3 in alleviating muscle atrophy related to high levels of AII.


Angiotensin II , Calcitriol , Mice , Animals , Calcitriol/adverse effects , Calcitriol/metabolism , Angiotensin II/pharmacology , Angiotensin II/metabolism , Proteolysis , Cholecalciferol/adverse effects , Losartan/pharmacology , Muscle Fibers, Skeletal/metabolism , Muscular Atrophy/metabolism , Oxidative Stress , Muscle, Skeletal/metabolism
17.
Food Funct ; 15(8): 4564-4574, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38584588

This study aimed to investigate the potential of beef peptides (BPs) in mitigating muscle atrophy induced by dexamethasone (DEX) with underlying three mechanisms in vitro (protein degradation, protein synthesis, and the oxidative stress pathway). Finally, the anti-atrophic effect of BPs was enhanced through purification and isolation. BPs were generated using beef loin hydrolyzed with alcalase/ProteAX/trypsin, each at a concentration of 0.67%, followed by ultrafiltration through a 3 kDa cut-off. BPs (10-100 µg mL-1) dose-dependently counteracted the DEX-induced reductions in myotube diameters, differentiation, fusion, and maturation indices (p < 0.05). Additionally, BPs significantly reduced FoxO1 protein dephosphorylation, thereby suppressing muscle-specific E3 ubiquitin ligases such as muscle RING-finger containing protein-1 and muscle atrophy F-box protein in C2C12 myotubes at concentrations exceeding 25 µg mL-1 (p < 0.05). BPs also enhanced the phosphorylation of protein synthesis markers, including mTOR, 4E-BP1, and p70S6K1, in a dose-dependent manner (p < 0.05) and increased the mRNA expression of antioxidant enzymes. Fractionated peptides derived from BPs, through size exclusion and polarity-based fractionation, also demonstrated enhanced anti-atrophic effects compared to BPs. These peptides downregulated the mRNA expression of primary muscle atrophy markers while upregulated that of antioxidant enzymes. Specifically, peptides GAGAAGAPAGGA (MW 924.5) and AFRSSTKK (MW 826.4) were identified from fractionated peptides of BPs. These findings suggest that BPs, specifically the peptide fractions GAGAAGAPAGGA and AFRSSTKK, could be a potential strategy to mitigate glucocorticoid-induced skeletal muscle atrophy by reducing the E3 ubiquitin ligase activity.


Muscle Fibers, Skeletal , Muscular Atrophy , Oxidative Stress , Peptides , Animals , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Mice , Oxidative Stress/drug effects , Peptides/pharmacology , Cattle , Proteolysis/drug effects , Cell Line , Protein Biosynthesis/drug effects , Red Meat , Muscle Proteins/metabolism , Dexamethasone/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Phosphorylation , TOR Serine-Threonine Kinases/metabolism
18.
Sci Rep ; 14(1): 8388, 2024 04 10.
Article En | MEDLINE | ID: mdl-38600177

MicroRNAs (miRNAs) may play a crucial regulatory role in the process of muscle atrophy induced by high-altitude hypoxia and its amelioration through resistance training. However, research in this aspect is still lacking. Therefore, this study aimed to employ miRNA microarray analysis to investigate the expression profile of miRNAs in skeletal muscle from an animal model of hypoxia-induced muscle atrophy and resistance training aimed at mitigating muscle atrophy. The study utilized a simulated hypoxic environment (oxygen concentration at 11.2%) to induce muscle atrophy and established a rat model of resistance training using ladder climbing, with a total intervention period of 4 weeks. The miRNA expression profile revealed 9 differentially expressed miRNAs influenced by hypoxia (e.g., miR-341, miR-32-5p, miR-465-5p) and 14 differentially expressed miRNAs influenced by resistance training under hypoxic conditions (e.g., miR-338-5p, miR-203a-3p, miR-92b-3p) (∣log2(FC)∣ ≥ 1.5, p < 0.05). The differentially expressed miRNAs were found to target genes involved in muscle protein synthesis and degradation (such as Utrn, mdm2, eIF4E), biological processes (such as negative regulation of transcription from RNA polymerase II promoter, regulation of transcription, DNA-dependent), and signaling pathways (such as Wnt signaling pathway, MAPK signaling pathway, ubiquitin-mediated proteolysis, mTOR signaling pathway). This study provides a foundation for understanding and further exploring the molecular mechanisms underlying hypoxia-induced rats muscle atrophy and the mitigation of atrophy through resistance training.


MicroRNAs , Resistance Training , Humans , Rats , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Gene Expression Profiling
19.
PLoS One ; 19(4): e0302194, 2024.
Article En | MEDLINE | ID: mdl-38630690

Cancer cachexia causes skeletal muscle atrophy, impacting the treatment and prognosis of patients with advanced cancer, but no treatment has yet been established to control cancer cachexia. We demonstrated that transcutaneous application of carbon dioxide (CO2) could improve local blood flow and reduce skeletal muscle atrophy in a fracture model. However, the effects of transcutaneous application of CO2 in cancer-bearing conditions are not yet known. In this study, we calculated fat-free body mass (FFM), defined as the skeletal muscle mass, and evaluated the expression of muscle atrophy markers and uncoupling protein markers as well as the cross-sectional area (CSA) to investigate whether transcutaneous application of CO2 to skeletal muscle could suppress skeletal muscle atrophy in cancer-bearing mice. Human oral squamous cell carcinoma was transplanted subcutaneously into the upper dorsal region of nude mice, and 1 week later, CO2 gas was applied to the legs twice a week for 4 weeks and FFM was calculated by bioimpedance spectroscopy. After the experiment concluded, the quadriceps were extracted, and muscle atrophy markers (muscle atrophy F-box protein (MAFbx), muscle RING-finger protein 1 (MuRF-1)) and uncoupling protein markers (uncoupling protein 2 (UCP2) and uncoupling protein 3 (UCP3)) were evaluated by real-time polymerase chain reaction and immunohistochemical staining, and CSA by hematoxylin and eosin staining. The CO2-treated group exhibited significant mRNA and protein expression inhibition of the four markers. Furthermore, immunohistochemical staining showed decreased MAFbx, MuRF-1, UCP2, and UCP3 in the CO2-treated group. In fact, the CSA in hematoxylin and eosin staining and the FFM revealed significant suppression of skeletal muscle atrophy in the CO2-treated group. We suggest that transcutaneous application of CO2 to skeletal muscle suppresses skeletal muscle atrophy in a mouse model of oral squamous cell carcinoma.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Mice , Animals , Carbon Dioxide/metabolism , Cachexia/etiology , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck/pathology , Mice, Nude , Eosine Yellowish-(YS) , Hematoxylin , Mouth Neoplasms/pathology , Muscular Atrophy/pathology , Muscle, Skeletal/metabolism , Head and Neck Neoplasms/pathology , Mitochondrial Uncoupling Proteins/metabolism
20.
Mol Med Rep ; 29(6)2024 Jun.
Article En | MEDLINE | ID: mdl-38606516

Muscular atrophy, which results in loss of muscle mass and strength, is a significant concern for patients with various diseases. It is crucial to comprehend the molecular mechanisms underlying this condition to devise targeted treatments. MicroRNAs (miRNAs) have emerged as key regulators of gene expression, serving vital roles in numerous cellular processes, including the maintenance of muscle stability. An intricate network of miRNAs finely regulates gene expression, influencing pathways related to muscle protein production, and muscle breakdown and regeneration. Dysregulation of specific miRNAs has been linked to the development of muscular atrophy, affecting important signaling pathways including the protein kinase B/mTOR and ubiquitin­proteasome systems. The present review summarizes recent work on miRNA patterns associated with muscular atrophy under various physiological and pathological conditions, elucidating its intricate regulatory networks. In conclusion, the present review lays a foundation for the development of novel treatment options for individuals affected by muscular atrophy, and explores other regulatory pathways, such as autophagy and inflammatory signaling, to ensure a comprehensive overview of the multifarious nature of muscular atrophy. The objective of the present review was to elucidate the complex molecular pathways involved in muscular atrophy, and to facilitate the development of innovative and specific therapeutic strategies for the prevention or reversal of muscular atrophy in diverse clinical scenarios.


MicroRNAs , Muscular Diseases , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/therapy , Muscular Atrophy/metabolism , Signal Transduction/genetics
...